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no~,t~:~( t a r t  r~: 
a, semi-length of cuboid: 
q,. specific heat at constant pressure: 
L, latent heat of fusion: 
~,. thermal diffusivity: 
7;,,, ambient temperature: 
7}., fusion temperature: 
ft. 1. . .%17;~ - 1o ) :  
0, temperature, non-dimensionalised and 

normalised b,v subtracting "I~, and dividing 
by' T r -  '1~: 

:, time, non-dimensionalised with respect to h..a:, 
~, volume of solidified phase, non-dimensionalised 

with respect to a3; 
X. Y, Z, coordinates, non-dimensionalised with respect 

t o  a ;  

K, E, complete elliptic integrals of the first and second 
kinds, respectively: 

g, ~:, free-parameters in temperature protile: 
R. IX, Y. ZI: 
So, So(R) = 0 denotes the st.rfacc of the cuboid: 
S., &(R. r) = 0 denotes the inter-phase surface: 
dS, directed element of area, non-dimcnsionalised 

with respect to a:. 

I. I N [ R O D [  C T I O N  

THERI-: is considerable interest in the group of problems 
collectively known as the Stefan problem, as is shown in 
the Proceedings of the Conference on Moving Boundary 
Problems in Heat Flow and Diffusion [1]. However, there 
is comparatively little information of an analytical or 
approximate nature available and so the development of 
numerical methods to deal with Stefan problems is inhibited. 

In this paper the heat balance integral method is applied 
to the three-dimensional problem of the freezing ofa cuboid, 
which has previously been examined numerically by 
Lazaridis [4]. using an explicit finite difference scheme. 
There are in practice two approaches to the method: 
there is the one adopted in this paper due to Poots [2. 3]. 
which leads to the need to solve coupled differential 
equations, and there is also Goodman's  approach [5], 
which minimises the number of differential equations to bc 
solved by using conditions leading to algebraic equations 
for the coefficients. Whilst the latter approach is certainly 
more appealing, it is also much more difficult to im- 
plement when multi-dimensional problems are considered 
(Goodman's method apparently breaks down even for the 
freezing cylinder and sphere problems, which are both one- 
dimensional problems [2] I. 

Finally, the question of accuracy of this method is still 
unresolved: an attempt to establish some criteria was made 
by Langford [6], who applied the method to the semi- 
infinite region. 

.l. t" , ,  A I."1 SIS 

In what follows, we shall assume that: li) all thermal 
properties are constant: 0il the temperature of the molten 
phase is constant, and equal to that of fusion: and liii) the 
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material has a definite fusion temperature (which implies a 
sharp inter-phase boundary). The heat balance method can 
cope with some relaxation of these conditions, for example 
the thermal conductMty may be taken to be temperature 
dependent. However just bow general a problem the method 
can deal with is a matter for further investigation. 

For convenience we shall work in terms of dimensionless 
quantities {see nomenclature for details). We consider a 
cuboid consisting of molten material at the fusion tempera- 
ture I. bounded by the surface 

So(R) = II .-XeII1 Y z ) [ I - Z : )  = 0. 

At time r = 0 a uniform temperature 0 is imposed and 
maintained at the outer boundary; the body subsequently 
solidifies inwards. The problem is to determine the tem- 
perature distribution in the solidified phase and the location 
of the solidification front. 

Following Poots we form two heat-balance integrals by 
integrating the heat conduction equation and its first 
moment over the solidified phase (cf. Poots [3], equations 
(3.31 and (3.4)}, ~ iz.: 

dl[  
"[~ .Gdv,?Ti I''" dOdl I1 fi d-:z 4. VO'dS = 

and 

# 
dr ..~L , t  a'r) 

In order to apply the heat-balance integral method we 
need to guess the shape of the solidification front this wc 
do guided b~ Poots" arguments for the two-dimensional 
prism. We assume that for small time the inter-phase 
surface will' b c a  cube with rounded corners (cf. Lazaridis" 
results: Figs. 15-181, and that eventually it becomes 
spherical. Hence it seems reasonable to assume that the 
phase interface is given by 

SiIR, r) = [ 1 -- .\-'111 - Y~')(I - Z 2 I  -~:(r) = 0 13) 

where ~:{01 = 0 and at the instant of solidification ,: = 1. 

£,0 0ne-parumeter method 
We assume the one-parameter temperature distribution 

[1 --X:)I I .-. yz)[ I -- Z21 
0 . . . . . . . .  t4) 

which automatically satisfies the isothermal boundary con- 
ditions: 

O = 0  on S o = ; / '  
0 = I on Si 151 

On substituting {4) into the heat-balance integral {ll there 
results a first order differential equation for g(r), the solution 
of which is given by 

t = f l lo [ t : l  + 1 ~i~:) (6) 

where 

( i i  ..... 
lola) = f~6 11-a)KdZdS. .  
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Table I. The universal functions 
lo(e), ll(e) for the solution to the 

cube by the one-parameter method 

r. Io I~ 

0.00 0.0000 0.0000 
0.04 0.0010 0.0006 
0.08 0.0031 0.0019 
0.12 0.0061 0.0037 
0.16 0.0097 0.0059 
0.20 0.0138 0.0085 
0.24 0.0184 0.0114 
0.28 0.0232 0.0146 
0.32 0.0284 0.0181 
0.36 0.0337 0.0217 
0.40 0.0393 0.0255 
0.44 0.0449 0.0296 
0.48 0.0507 0.0337 
0.52 0.0565 0.0380 
0.56 0.0623 0.0424 
0.60 0.0680 0.0469 
0.64 0.0737 0.0515 
0.68 0.0793 0.0561 
0.72 0.0846 0.0608 
0.76 0.0898 0.0655 
0.80 0.0947 0.0702 
0.84 0.0992 0.0750 
0.88 0.1033 0.0797 
0.92 0.1068 0.0843 
0.96 0.1096 0.0889 
1.00 0. I 111 0.0935 

o = 1-[.; . . . ' (I-Z2)],  and the complete elliptic integrals K 
and E have modulus ~,a (see Dwight [7]). In the integral 
for IL(e), the K term in the integrand has a weak logarithmic 
singularity [likewise in lo(c)], whilst the pole at ;. = 0 in the 
term 1/92 cancels out with the pole obtained by subtracting 
out the singularity in the E term. Gaussian quadrature. 
which avoids evaluations of the integrand at the limits of 
the integral, was used to evaluate the resulting integrals. 

Information on the complete or partial solidification of 
a cube may be obtained for any specified substance by simply 
substituting the relevant value offl in (6) and using Table 1. 
However to try to improve the accuracy of the results, 
which are suspect for large times, we now apply the two- 
parameter method. 

(b) Two-parameter method 
We assume the two-parameter temperature distribution: 

(1-g)(1 - X 2 ) ( 1 -  Y2)(1 - Z  2) 

e 

which satisfies the isothermal boundary conditions (5). g(r) 
and e(r) are unknown parameters determined by the heat 
balance integrals (11 and (2). Substituting (7) into t he~  two 
equations yields the following two coupled differential 
equations 

d o \ de 
ao+aly+a2 ~ ) ~ - T  + a3(,q -- ]) = O, (8) 

d q~d~ 
( ho + h, ~ + h,_~ ~ + (~,~ . b,,~) -& ] a~ 

+h~,+ht, g+h.~12=O, (9) 

where the coefficients a .  bj[i = Otl)3; j = 0(1)7] invoh'e 
elliptic integrals and polynomials in l/t*. By eliminating 
dE/dr from (8} and (9). a first order differential equation 

*Details may be obtained from the authors. 
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governing ,q(e) is obtained; the solution to this is substituted 
back into (8) and the solution for e(z) found. Unfortunately 
dg/dr, turns out to be singular as e---, 0, and so the differ- 
ential equation cannot be integrated numerically outwards 
from the origin. The usual expedient to circumvent this 
difficulty is to find a series representation valid for e ~ 0, 
and then to use this series to start the numerical solution 
away from the singularity (see Poots [3]). In this case, 
however, the algebra was too prohibitive and another 
approach had to be used. 

The first point to note is that by finding the asymptotic 
form of the differential equation for if, it is possible to 
show that the value of g at r, = 0, go say, must satisfy the 
cubic equation: 

7g/~ + i60fl + 48).qo2 + (180fl+ 75)go + 30 = 0. (10) 

This is. in fact, exactly the same cubic as that found by 
Poots in the two-dimensional analogue, i.e. the uniform 
prism of square cross-section. By invoking a minimum 
energy principle, we took the smallest root of this cubic to 
be the initial value. Given this value (for a particular fl), 
solutions were first computed for .q(c) by applying the initial 
condition at a point away from the origin. A second 
approach was used whereby the equation was again solved 
starting at some given ~.. away from the origin, but this 
time using the value of y at this ~: obtained by Poots for 
the prism. Essentially, this latter procedure makes use of the 
fact that away from the vertices of the cube, the solidification 
process for the cube must resemble that for the uniform 
prism, i.e. that away from the vertices, three-dimensional 
edge effects are unimportant for small times. 

Having obtained g(D. (8) was easily integrated to obtain 
r(c). The integration was initiated at the same value of e as 
that used in solving for g(e): the starting value being r as 
given by the one-parameter method at this c. Here it has 
been assumed that, for small time, the one- and two- 
parameter solutions agree (this result being indicated by the 
work of Poots [2.3] }. 

All integrations were carried out using a fourth-order 
Runge-Kutta procedure. 

Finally, these results may be extended to a cuboid of 
sides 2a, 2b. 2c by replacing r by z* given by 

r* = ½r(l +7-' +Z") (I1) 

where 

,'=a.:b and z = a : c .  

3. RESULTS AND DISCUSSION 

Figure I shows graphically the results of solving the first 
order differential equation for 9(e) using the initialising 
procedures suggested in the previous section. It is at once 
apparent that 9 quickly settles down and that, for moderate 
freezing times (we have only investigated the case when 
fl ~ 1 in this paper), it is immaterial which starting procedure 
is used. However it should be emphasized that it is far easier 
to use Poots' solution for the prism, rather than perform 
the rather lengthy algebra necessary to obtain equation (10). 

Four quadratures were performed to obtain r(r,) using the 
four solutions if(e) obtained previously. The results indicated 
that the actual starting point and values had negligible 
effect on r(e) [and g(e)] for r, i> 0.28. It is suggested therefore 
that for practical purposes a combination of the two 
methods should be used the one-parameter method being 
used for small time up to ~: ~ 0.3, say, and thereafter the 
two-parameter method with the one-parameter method 
results being used to start off the two-parameter solution. 
However, if results are required only for small depths of 
solidification, then the one-parameter method should be 
sufficient. Figure 2 shows the results of the suggested 
procedure for fl = 1.5613 and fl = 5, which are typical values 
of fl for substances such as aluminium, copper, iron, zinc, 
etc. when the temperature difference TF-- To is of the order 
of 200':C. 
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FIG. 1. g vs c. l - - so lu t ion  using g0 [from equation (lt)l 
when/3 = 1.5613] appl ied at r. = 0.12; II -as I but with .m) 
applied at ~; = 0.20; III- solution using Poots" value of ~t 
(for prism) evaluated at ~: = 0.12: IV as III but with ~/ 

evaluated at c = 0.20. 
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FIG. 2. Location history of the freezing isotherm in the cube 
when /3 = 1.5613 and ,8 = 5.0. I -  one-parameter method: 

I I  two-parameter method. 

Figure 3 shows the solid fraction along one of the main 
diagonals and along one of the axes of the cube, for 
fl = 1.5613 and 5. 

The above results should provide a basis for comparison 
with purely numerical methods, and as remarked earlier, 
they also allow numerical solutions to be started away from 
the singularity at t = 0. We do not give a comparison with 
Lazaridis' results since he has presented them only for times 
r <~ 0.047 (/3 = 1.5613). 

0 0 I 0.2 0.3 0.4 0.5 06  07 08 09 1.0 I. I 

( 

t-t(~. 3. Solid fraction along the diagonals of a cuboid as ,t 
function of time. - -  Main diagonal IX - I" ~ Z): --- Sub- 

diagonal(Y = Z = 01. 

Unfortunately the overall accurac', of the present results 
cannot be assessed and at present there is no obviou,,, 
criterion to optimise the choice of profile to be used in the 
heat balance method. 
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